Cloud & AGI Developer Program
(24 Hours)
This course is designed for software engineers, developers, architects, and other technical professionals seeking to deepen their understanding of cloud and AGI (Artificial General Intelligence) technologies. Participants will gain foundational knowledge in cloud computing, storage, networking, security, and CI/CD, along with insights into AGI services. The program offers a practical, hands-on approach through labs and demos, enabling learners to build real-world skills. Spanning topics from virtual machines to cutting-edge AGI infrastructure, the curriculum bridges core cloud concepts with emerging innovations. Completing the four-course AGI Developer program can significantly enhance career opportunities in the evolving tech landscape.
Enroll in AppliedTech Cloud & AGI Developer Program
AppliedTech Academy proudly presents its AGI Developer Program, a comprehensive training course tailored for software engineers, developers, architects, and other technically inclined professionals. The course is designed to equip participants with a solid foundation in essential cloud concepts including compute, storage, networking, security, and CI/CD. Through a blend of theory and practical hands-on labs, learners will explore technologies such as virtual machines, containers, and serverless computing. This foundational knowledge is essential for anyone aiming to navigate and thrive in modern cloud environments.
The second part of the program focuses on advanced AGI (Artificial General Intelligence) services and infrastructure. Participants will explore managed LLMOps platforms like AWS Bedrock, GCP Vertex AI, Azure AI Foundry, and Databricks, as well as offerings from cutting-edge startups. The course dives into serverless LLM APIs, AI-specific hardware innovations including CPUs, GPUs, NPUs, and AI accelerators, and explores how AGI is being brought to the edge by leaders like NVIDIA, Apple, and Qualcomm. These insights help learners understand how AGI is built, deployed, and optimized in real-world scenarios.
AppliedTech Academy’s AGI Developer Program is structured as a four-course journey with hands-on labs to reinforce key concepts and practical applications. By the end of the program, participants will not only understand the current state of AGI and cloud technologies but will also be able to apply this knowledge to develop real-world AGI solutions. Whether aiming for career advancement or transitioning into AI-focused roles, learners will gain valuable, future-ready skills. This program opens doors to exciting career prospects in the rapidly evolving field of artificial intelligence and cloud computing.
An overview of what you will learn from this program.
Gain a deep understanding of virtual machines, containers, and serverless compute models through theory and hands-on labs.
Learn how to work with block and object storage, as well as managed cloud database services.
Understand modern software delivery pipelines and automation using continuous integration and deployment tools.
Explore secure network design, access controls, and best practices for protecting cloud-native applications.
Discover how to use managed AGI services like AWS Bedrock, GCP Vertex AI, and Azure AI Foundry for scalable AI development.
Learn about the latest hardware innovations in AI (CPUs, GPUs, NPUs) and how AGI is being deployed at the edge with real-world use cases.
Program Highlights
Hands-on Labs
Code demos and most updated labs to sharpen your skills and practice your learnings. Access latest and powerful LLM models through our online platform and be up-to-date.
Personalized Mentorship
Receive personalized guidance from experienced faculty and mentors, benefiting from a low student-to-instructor ratio that ensures you receive tailored support and assistance.
Experienced Faculty Members
Learn from top industry experts. A low student-to-instructor ratio guarantees close interaction with faculty, enabling a personalized learning experience and effective support.
Enhancing Employability
At Our Academy, mentors develop skilled talent for Industry 4.0 by providing comprehensive support, ensuring you gain the expertise employers need.
Internship Certificates Based on Performance
At AppliedTech, our internship certificates reflect real skills, not just attendance. Every certificate is earned through performance, project work, and practical impact.
About the Cloud & AGI Developer Program Course
Cloud & AGI Developer Program
In this program, you will begin by mastering the core components of cloud computing, including virtual machines, containers, serverless computing, storage systems, and cloud databases. You’ll gain practical experience through hands-on labs and learn how to implement DevOps and CI/CD pipelines for efficient software delivery. Additionally, you’ll explore cloud networking and security essentials to ensure robust and scalable infrastructure.
Moving beyond the basics, the program dives into AGI (Artificial General Intelligence) development. You’ll explore powerful LLMOps platforms like AWS Bedrock, GCP Vertex AI, and Azure AI Foundry, along with innovations in AI hardware such as GPUs, NPUs, and AI accelerators. The course also covers emerging trends like AGI at the edge, enabling you to build intelligent systems using the latest tools and technologies.
Why choose AppliedTech :
At AppliedTech, we envision a future where individuals are empowered to navigate and excel in the rapidly evolving realm of technology. Our dedicated team is committed to revolutionizing the learning experience, instilling innovative thinking and adaptability to keep pace with the ever-changing technological landscape.
Our mission at AppliedTech is to cultivate a culture of continuous learning and development, nurturing individuals from diverse backgrounds, whether rooted in the world of IT or branching out into non-IT domains. We firmly believe that knowledge has no boundaries, and we are dedicated to breaking down barriers to make technology education accessible to all.
Get Ahead with Cloud & AGI Developer Program Certificate!
Certificate of Completion for the Program
Internship Certificate from Participating Companies
Letter of Recommendation

Program Eligibility Criteria and Prerequisites :
- No programming experience needed
- All tools used in this course are free for you to use.
- Internet, Laptop/PC
- We start from the very basics
Cloud & AGI Developer Certification Program Course Outline
- Virtual Machines , Containers & Serverless Compute with demos
- Hands-on Labs (3): Virtual Machines , Containers & Serverless Compute
- Storage (Block & Object, cloud databases) with demos
- Hands-on Labs: Object storage and managed database service
- DevOps/ CI-CD with demo
- Cloud Networking & Security
- Managed LLMOps services (AWS Bedrock, GCP Vertex AI, Azure AI Foundry, Databricks)
- Serverless LLM APIs & offerings of startups providing AGI Infra
- Innovations & current state: Chips, CPU, GPU, NPU, AI accelerators and VMs optimized for training, inference
- CPU based Inferencing (ARM, others)
- AGI at the edge (Innovations from NVIDIA, Apple, Qualcomm, others) incl use cases
Course Syllabus In Detail :
- Session 1: Python Basics
- About Python
- Python Data Types
- Python Variables
- Python comments
- Python Keywords and Identifiers
- Python User Input
- Python Type conversion
- Python Literals
- Session 2: Python Operators + if-else + Loops
- Python Operators
- Python if-else
- Python While Loop
- Python for loop
- Break, continue, pass statement in loops
- Session 3: Python Strings
- String indexing
- String slicing
- Common String functions
- Assignments and Interview Questions
- Session 4: Python Lists
- Array vs List
- How lists are stored in a memory
- All Operations on List
- List Functions
- Session 5: Tuples + Set + Dictionary
- Tuple
- Operations on tuple
- Set functions
- Session 6: Dictionary
- Operations on dictionary
- Dictionary functions
- Assignments and Interview Questions
- Create functions.
- Arguments and parameters
- args and kwargs
- map(), filter(), reduce()
- Assignments and Interview Questions
- Session 7: OOP Part1
- What is OOP?
- What are classes and Objects?
- Methods vs Functions
- Magic/Dunder methods
- What is the true benefit of constructor?
- Concept of ‘self’
- __str__, __add__, __sub__ , __mul__ , __truediv__
- Session 8: OOP Part2
- Encapsulation
- Collection of objects
- Session 9: OOP Part3
- Class Relationship
- Inheritance and Inheritance class diagram
- Constructor example
- Types of Inheritance (Single, Multilevel, Hierarchical,Multiple )
- Code example and diamond problem
- Polymorphism
- Method Overriding and Method Overloading
- Session on Abstraction
- What is Abstraction?
- Abstract class
- 3 Interview Questions
- Session 10: File Handling + Serialization & Deserialization
- How File I/O is done
- Writing to a new text file
- append()
- Reading a file -> read() and readline()
- Seek and tell
- Working with Binary file
- Serialization and Deserialization
- JSON module -> dump() and load()
- Pickling
- Session 11: Exception Handling
- Syntax/Runtime Error with Examples
- Why we need to handle Exception?
- Exception Handling (Try-Except-Else-Finally)
- Handling Specific Error
- Raise Exception
- Create custom Exception
- Exception Logging
- Session 12: Decorators
- Decorators with Examples
- Session on Generator
- What is a generator?
- Why to use Generator?
- Yield vs Return
- 4 Interview Questions
- Session 13: Numpy Fundamentals
- Numpy Theory
- Numpy array
- Matrix in numpy
- Array operations
- Scalar and Vector operations
- Session 14: Advanced Numpy
- Numpy array vs Python List
- Broadcasting
- Mathematical operations in numpy
- Sigmoid in numpy
- Mean Squared Error in numpy
- Various functions like sort, append, concatenate, percentile, flip, Set functions, etc.
- Session 16: Pandas Series
- What is Pandas?
- Introduction to Pandas Series
- Series Methods
- Session 17: Pandas DataFrame
- Introduction Pandas DataFrame
- Creating DataFrame and read_csv()
- Selecting cols and rows from dataframe
- Filtering a Dataframe
- Adding new columns
- Session 18: Important DataFrame Methods
- Sort, index, reset_index, isnull, dropna, fillna, drop_duplicates, value_counts, apply etc.
- Session 19: GroupBy Object
- What is GroupBy?
- Applying builtin aggregation fuctions on groupby objects
- Session 20: Merging, Joining, Concatenating
- Pandas concat method
- Merge and join methods
- Practical implementations
- Session 21: MultiIndex Series and DataFrames
- Session on Pandas Case Study
- Session 23: Plotting Using Matplotlib
- Get started with Matplotlib
- Plotting simple functions, labels, legends, multiple plots
- About scatter plots
- Bar chart
- Histogram
- Pie chart
- Changing styles of plots
- Session 25: Plotting Using Seaborn
- Why seaborn?
- Categorical Plots
- Stripplot
- Swarmplot
- Categorical Distribution Plots
- Boxplot
- Violinplot
- Barplot
- Session on Data Cleaning and Data Preprocessing Case Study
- Quality issues
- Tidiness issues
- Data Cleaning
- Session 29: Exploratory Data Analysis (EDA)
- Introduction to EDA
- Why EDA?
- Steps for EDA
- Univariate, Bivariate Analysis
- Feature Engineering
- Data Preprocessing steps.
- Session 30: Database Fundamentals
- Introduction to Data and Database
- CRUD operations
- Types of Database
- MySQL workbench
- DDL ,DML ,DQL ,DCL Commands
- Selecting & Retrieving Data with SQL
- Filtering, Sorting, and Calculating Data with SQL
- Sub Queries and Joins in SQL
- Session 38: Descriptive Statistics Part 1
- What is Statistics?
- Types of Statistics
- Population vs Sample
- Types of Data
- Measures of central tendency
- Measure of Dispersion
- Quantiles and Percentiles
- Five Number Summary
- Boxplots
- Scatterplots
- Covariance
- Correlation
- Probability Distribution Functions (PDF, CDF, PMF)
- Random Variables
- Probability Distributions
- Probability Distribution Functions and its types
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF) of PMF
- Probability Density Function (PDF)
- Density Estimation
- Parametric and Non-parametric Density Estimation
- Kernel Density Estimate (KDE)
- Cumulative Distribution Function (CDF) of PDF.
- Session 41: Normal Distribution
- How to use PDF in Data Science?
- 2D density plots
- Normal Distribution (importance, equation, parameter, intuition)
- Standard Normal Variate (importance, z-table, empirical rule)
- Skewness
- Use of Normal Distribution in Data Science
- Session 42: Non-Gaussian Probability Distributions
- Kurtosis and Types
- Transformation
- Mathematical Transformation
- Log Transform
- Reciprocal Transform / Square or sqrt Transform
- Power Transformer
- Box-Cox Transform
- Session 43: Central Limit Theorem
- Bernouli Distribution
- Binomial Distribution
- Intuition of Central Limit Theorem (CLT)
- CLT in code
- Session 44: Confidence Intervals
- Confidence Interval
- Ways to calculate CI
- Applications of CI
- Confidence Intervals in code
- Confidence Interval
- Session 45: Hypothesis Testing (Part 1)
- Key idea of hypothesis testing
- Null and alternate hypothesis
- Steps in Hypothesis testing
- Performing z-test
- Rejection region and Significance level
- Type-1 error and Type-2 Error
- One tailed vs. two tailed test
- Applications of Hypothesis Testing
- Hypothesis Testing in Machine Learning
- Session 46: Hypothesis Testing (Part 2) | p-value and t-tests
- What is p-value?
- Interpreting p-value
- T-test
- Types of t-test
- Single sample t-Test
- Independent 2-sample t-Test
- Paired 2 sample t-Test
- Code examples of all of the above
- Session on Chi-square test
- Chi-square test
- Goodness of fit test (Steps, Assumptions, Examples)
- Test for Independence (Steps, Assumptions, Examples)
- Applications in machine learning
- Session on ANOVA
- F-distribution
- One/Two-way ANOVA
- Session on Tensors | Linear Algebra part 1(a)
- What are tensors?
- 0D, 1D and 2D Tensors
- Nd tensors
- Example of 1D, 2D, 3D, 4D, 5D tensors
- Session on Vectors | Linear Algebra part 1(b)
- What is Linear Algebra?
- What are Vectors?
- Vector example in ML
- Row and Column vector
- Distance from Origin
- Euclidean Distance
- Scalar Addition/Subtraction (Shifting)
- Vector Addition/Subtraction
- Dot product
- Angle between 2 vectors
- Linear Algebra Part 2 | Matrices (computation)
- What are matrices?
- Types of Matrices
- Matrix Equality
- Scalar Operation
- Matrix Addition, Subtraction, multiplication
- Transpose of a Matrix
- Determinant
- Inverse of Matrix
- Linear Algebra Part 3 | Matrices (Intuition)
- Basis vector
- Linear Transformations
- Linear Transformation in 3D
- Matrix Multiplication as Composition
- Determinant and Inverse
- Transformation for non-square matrix?
- Session 48: Introduction to Machine Learning
- About Machine Learning (History and Definition)
- Types of ML
- Supervised Machine Learning
- Unsupervised Machine Learning
- Semi supervised Machine Learning
- Reinforcement Learning
- Batch/Offline Machine Learning
- Instance based learning
- model-based learning
- Instance vs model-based learning
- Challenges in ML
- Data collection
- Insufficient/Labelled data
- Non-representative date
- Poor quality data
- Irrelevant features
- Overfitting and Underfitting
- Offline learning
- Cost
- Machine Learning Development Life-cycle
- Different Job roles in Data Science
- Framing a ML problem | How to plan a Data Science project
- Session 49: Simple Linear regression
- Introduction and Types of Linear Regression
- Intuition of simple linear regression
- How to find m and b?
- Regression Metrics
- MAE, MSE, RMSE, R2 score, Adjusted R2 score
- Session 50: Multiple Linear Regression
- Introduction to Multiple Linear Regression (MLR)
- Mathematical Formulation of MLR
- Error function of MLR
- Session on Polynomial Regression
- Why we need Polynomial Regression?
- Formulation of Polynomial Regression
- Session on Assumptions of Linear Regression
- Session 53: Multicollinearity
- What is multicollinearity?
- How to detect and remove Multicollinearity
- Correlation
- VIF (Variance Inflation Factor)
- Session 1: Python Basics
- About Python
- Python Data Types
- Python Variables
- Python comments
- Python Keywords and Identifiers
- Python User Input
- Python Type conversion
- Python Literals
- Session 2: Python Operators + if-else + Loops
- Python Operators
- Python if-else
- Python While Loop
- Python for loop
- Break, continue, pass statement in loops
- Session 3: Python Strings
- String indexing
- String slicing
- Common String functions
- Assignments and Interview Questions
- Session 4: Python Lists
- Array vs List
- How lists are stored in a memory
- All Operations on List
- List Functions
- Session 5: Tuples + Set + Dictionary
- Tuple
- Operations on tuple
- Set functions
- Session 6: Dictionary
- Operations on dictionary
- Dictionary functions
- Assignments and Interview Questions
- Create functions.
- Arguments and parameters
- args and kwargs
- map(), filter(), reduce()
- Assignments and Interview Questions
- Session 7: OOP Part1
- What is OOP?
- What are classes and Objects?
- Methods vs Functions
- Magic/Dunder methods
- What is the true benefit of constructor?
- Concept of ‘self’
- __str__, __add__, __sub__ , __mul__ , __truediv__
- Session 8: OOP Part2
- Encapsulation
- Collection of objects
- Session 9: OOP Part3
- Class Relationship
- Inheritance and Inheritance class diagram
- Constructor example
- Types of Inheritance (Single, Multilevel, Hierarchical,Multiple )
- Code example and diamond problem
- Polymorphism
- Method Overriding and Method Overloading
- Session on Abstraction
- What is Abstraction?
- Abstract class
- 3 Interview Questions
- Session 10: File Handling + Serialization & Deserialization
- How File I/O is done
- Writing to a new text file
- append()
- Reading a file -> read() and readline()
- Seek and tell
- Working with Binary file
- Serialization and Deserialization
- JSON module -> dump() and load()
- Pickling
- Session 11: Exception Handling
- Syntax/Runtime Error with Examples
- Why we need to handle Exception?
- Exception Handling (Try-Except-Else-Finally)
- Handling Specific Error
- Raise Exception
- Create custom Exception
- Exception Logging
- Session 12: Decorators
- Decorators with Examples
- Session on Generator
- What is a generator?
- Why to use Generator?
- Yield vs Return
- 4 Interview Questions
- Session 13: Numpy Fundamentals
- Numpy Theory
- Numpy array
- Matrix in numpy
- Array operations
- Scalar and Vector operations
- Session 14: Advanced Numpy
- Numpy array vs Python List
- Broadcasting
- Mathematical operations in numpy
- Sigmoid in numpy
- Mean Squared Error in numpy
- Various functions like sort, append, concatenate, percentile, flip, Set functions, etc.
- Session 16: Pandas Series
- What is Pandas?
- Introduction to Pandas Series
- Series Methods
- Session 17: Pandas DataFrame
- Introduction Pandas DataFrame
- Creating DataFrame and read_csv()
- Selecting cols and rows from dataframe
- Filtering a Dataframe
- Adding new columns
- Session 18: Important DataFrame Methods
- Sort, index, reset_index, isnull, dropna, fillna, drop_duplicates, value_counts, apply etc.
- Session 19: GroupBy Object
- What is GroupBy?
- Applying builtin aggregation fuctions on groupby objects
- Session 20: Merging, Joining, Concatenating
- Pandas concat method
- Merge and join methods
- Practical implementations
- Session 21: MultiIndex Series and DataFrames
- Session on Pandas Case Study
- Session 23: Plotting Using Matplotlib
- Get started with Matplotlib
- Plotting simple functions, labels, legends, multiple plots
- About scatter plots
- Bar chart
- Histogram
- Pie chart
- Changing styles of plots
- Session 25: Plotting Using Seaborn
- Why seaborn?
- Categorical Plots
- Stripplot
- Swarmplot
- Categorical Distribution Plots
- Boxplot
- Violinplot
- Barplot
- Session on Data Cleaning and Data Preprocessing Case Study
- Quality issues
- Tidiness issues
- Data Cleaning
- Session 29: Exploratory Data Analysis (EDA)
- Introduction to EDA
- Why EDA?
- Steps for EDA
- Univariate, Bivariate Analysis
- Feature Engineering
- Data Preprocessing steps.
- Session 30: Database Fundamentals
- Introduction to Data and Database
- CRUD operations
- Types of Database
- MySQL workbench
- DDL ,DML ,DQL ,DCL Commands
- Selecting & Retrieving Data with SQL
- Filtering, Sorting, and Calculating Data with SQL
- Sub Queries and Joins in SQL
- Session 38: Descriptive Statistics Part 1
- What is Statistics?
- Types of Statistics
- Population vs Sample
- Types of Data
- Measures of central tendency
- Measure of Dispersion
- Quantiles and Percentiles
- Five Number Summary
- Boxplots
- Scatterplots
- Covariance
- Correlation
- Probability Distribution Functions (PDF, CDF, PMF)
- Random Variables
- Probability Distributions
- Probability Distribution Functions and its types
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF) of PMF
- Probability Density Function (PDF)
- Density Estimation
- Parametric and Non-parametric Density Estimation
- Kernel Density Estimate (KDE)
- Cumulative Distribution Function (CDF) of PDF.
- Session 41: Normal Distribution
- How to use PDF in Data Science?
- 2D density plots
- Normal Distribution (importance, equation, parameter, intuition)
- Standard Normal Variate (importance, z-table, empirical rule)
- Skewness
- Use of Normal Distribution in Data Science
- Session 42: Non-Gaussian Probability Distributions
- Kurtosis and Types
- Transformation
- Mathematical Transformation
- Log Transform
- Reciprocal Transform / Square or sqrt Transform
- Power Transformer
- Box-Cox Transform
- Session 43: Central Limit Theorem
- Bernouli Distribution
- Binomial Distribution
- Intuition of Central Limit Theorem (CLT)
- CLT in code
- Session 44: Confidence Intervals
- Confidence Interval
- Ways to calculate CI
- Applications of CI
- Confidence Intervals in code
- Confidence Interval
- Session 45: Hypothesis Testing (Part 1)
- Key idea of hypothesis testing
- Null and alternate hypothesis
- Steps in Hypothesis testing
- Performing z-test
- Rejection region and Significance level
- Type-1 error and Type-2 Error
- One tailed vs. two tailed test
- Applications of Hypothesis Testing
- Hypothesis Testing in Machine Learning
- Session 46: Hypothesis Testing (Part 2) | p-value and t-tests
- What is p-value?
- Interpreting p-value
- T-test
- Types of t-test
- Single sample t-Test
- Independent 2-sample t-Test
- Paired 2 sample t-Test
- Code examples of all of the above
- Session on Chi-square test
- Chi-square test
- Goodness of fit test (Steps, Assumptions, Examples)
- Test for Independence (Steps, Assumptions, Examples)
- Applications in machine learning
- Session on ANOVA
- F-distribution
- One/Two-way ANOVA
- Session on Tensors | Linear Algebra part 1(a)
- What are tensors?
- 0D, 1D and 2D Tensors
- Nd tensors
- Example of 1D, 2D, 3D, 4D, 5D tensors
- Session on Vectors | Linear Algebra part 1(b)
- What is Linear Algebra?
- What are Vectors?
- Vector example in ML
- Row and Column vector
- Distance from Origin
- Euclidean Distance
- Scalar Addition/Subtraction (Shifting)
- Vector Addition/Subtraction
- Dot product
- Angle between 2 vectors
- Linear Algebra Part 2 | Matrices (computation)
- What are matrices?
- Types of Matrices
- Matrix Equality
- Scalar Operation
- Matrix Addition, Subtraction, multiplication
- Transpose of a Matrix
- Determinant
- Inverse of Matrix
- Linear Algebra Part 3 | Matrices (Intuition)
- Basis vector
- Linear Transformations
- Linear Transformation in 3D
- Matrix Multiplication as Composition
- Determinant and Inverse
- Transformation for non-square matrix?
- Session 48: Introduction to Machine Learning
- About Machine Learning (History and Definition)
- Types of ML
- Supervised Machine Learning
- Unsupervised Machine Learning
- Semi supervised Machine Learning
- Reinforcement Learning
- Batch/Offline Machine Learning
- Instance based learning
- model-based learning
- Instance vs model-based learning
- Challenges in ML
- Data collection
- Insufficient/Labelled data
- Non-representative date
- Poor quality data
- Irrelevant features
- Overfitting and Underfitting
- Offline learning
- Cost
- Machine Learning Development Life-cycle
- Different Job roles in Data Science
- Framing a ML problem | How to plan a Data Science project
- Session 49: Simple Linear regression
- Introduction and Types of Linear Regression
- Intuition of simple linear regression
- How to find m and b?
- Regression Metrics
- MAE, MSE, RMSE, R2 score, Adjusted R2 score
- Session 50: Multiple Linear Regression
- Introduction to Multiple Linear Regression (MLR)
- Mathematical Formulation of MLR
- Error function of MLR
- Session on Polynomial Regression
- Why we need Polynomial Regression?
- Formulation of Polynomial Regression
- Session on Assumptions of Linear Regression
- Session 53: Multicollinearity
- What is multicollinearity?
- How to detect and remove Multicollinearity
- Correlation
- VIF (Variance Inflation Factor)
Ready to be a Cloud & AGI Developer Program?
Enroll in our Cloud & AGI Developer Program at AppliedTech Academy today and master the skills required to lead in the future of intelligent systems!
As industries rapidly embrace AGI and AI technologies, there is a growing need for professionals who can build, manage, and scale advanced AI solutions. This program is designed to equip you with in-demand skills in Python, machine learning, deep learning, and large language models (LLMs), alongside critical cloud and DevOps knowledge. Through a blend of theory and hands-on labs, you’ll learn how to develop, deploy, and optimize AGI applications using the latest tools and platforms. Whether you’re seeking career advancement or aiming to upskill your team, the Cloud & AGI Developer Program is your launchpad into the AI-powered future.
Enroll Today!

Testimonials
What they say
As someone with a background in software development, I was initially worried about how I’d transition into cybersecurity. But this course made it so easy. The instructors broke down complex topics, and the mentorship was invaluable. Highly recommend it for anyone looking to enter the field.
This course offered the perfect balance of theory and practice. The detailed modules on network security and ethical hacking were eye-opening, and I could immediately apply my new knowledge to safeguard sensitive information. The personalized learning path was exactly what I needed
I was completely new to IT, but this course helped me build a solid foundation in cybersecurity. The step-by-step approach, hands-on projects, and support from instructors gave me the confidence to pursue a career in this field. I’m now preparing for my first job as a cybersecurity analyst
I was impressed by the practical aspects of the course. It didn’t just teach the theory but also provided opportunities to work on real-world cybersecurity issues. The mentorship and guidance from industry experts made it easier to understand the challenges of the cybersecurity world
Cloud & AGI Developer Program FAQs
This course is designed for software engineers, developers, architects, and other technical professionals who want to build or enhance their skills in AI and machine learning.
No prior experience is required. The course starts with Python basics and gradually builds up to more advanced topics in machine learning and AI.
The course includes hands-on labs using Google Colab and covers popular Python libraries such as NumPy, Pandas, Scikit-learn, TensorFlow, Keras, NLTK, and SpaCy.
Yes, each module includes hands-on coding labs, code demos, and take-home exercises to reinforce learning and practical application.
Yes, participants who complete all modules and exercises successfully will receive an AGI Developer Certification.
LLMs (Large Language Models) are advanced AI models used for tasks like text generation and understanding. The course includes an introduction to LLMs, how they work, and practical prompting techniques.
The course includes approximately 22 hours of instruction and hands-on practice, spread across multiple modules.
The course completion certificate is valid for a lifetime and does not have an expiration date.
To enroll in the Cloud & AGI Developer course, visit the AppliedTech website and complete the enrollment form.
This program equips you with in-demand AI and machine learning skills, opening up opportunities in data science, AI development, and other high-growth tech roles.